Raw and processed celery, a possible source of antioxidants

Alda S.¹, Bordean Despina Maria*¹, Velciov Ariana Bianca¹, Cozma Antoanela¹, Moatar Mihaela¹, Borchescu R.¹, Alda Liana Maria¹

¹Banat University of Agricultural Sciences and Veterinary Medicine “King Mihai I of Romania”, 300645 Timisoara 119, Calea Aradului, Romania;

*Corresponding author. Email: despina.bordean@gmail.com

Abstract: Celery is an important source of antioxidants, vitamins and minerals. The aim of this study was to evaluate the total antioxidant capacity (TAC) and total polyphenols content (TPC) of raw and processed celery. Two types of celery from local market were analysed using CUPRAC and Folin Ciocalteau methods in order to quantify TAC and TPC. Regarding total antioxidant capacity, celery leaves registered the highest value (expressed in g Trolox equivalent /L extract), over nine times higher than those recorded by peel, raw, baked and boiled celery. Total polyphenols content (expressed in μmoli gallic acid equivalent/mL extract) for raw and processed celery registered close values. Our results show that celery leaves represent a considerable source of antioxidants in human nutrition.

Material and Methods

The celery samples used for analysis were acquired from the local market. The celery roots were washed with tap water and the peels were removed manually. The samples were chopped and used for analysis. The reagents used were of analytical grade.

Extraction of antioxidants. The extracts were prepared using 5.00 g of thin chopped samples in 50.0 mL of 50% ethanolic solution under magnetic stirring. After filtration, the extracts were analyzed using Folin Ciocalteau reagent with the formation of a blue color with the maximum absorption at 750 nm [4].

The aim of this study was to evaluate the total antioxidant capacity (TAC) and total polyphenols content (TPC) of raw and processed celery.

Celery leaves are rich in vitamin A, while strains are an excellent source of vitamin B1, B2, B6 and C to which potassium, folic acid, calcium, magnesium, iron, phosphorus, sodium and essential amino acids are added. Although most of the foods lose nutrients during cooking, most celery compounds resist high temperatures. Consumption of celery helps to lower blood pressure [8].

Celery is an important source of antioxidants, vitamins and minerals (Na, Ca, K, Mg, Fe, Zn [5]. Consumption of celery brings many health benefits: excellent hypotensive, attenuates digestive tract spasms and is a good anti-inflammatory and anti-bacterial agent [9]. Studies have shown that celery has a protective effect against colorectal cancer [6].

Yao, Yang et al., 2010 [7], identified in the extracts of celeries the following phenolic acids: caffeic acid, ferulic acid, and p-coumaric acid, while the identified flavonoids were luteolin, apigenin, kaempferol [7].

Results and Discussions

Regarding total antioxidant capacity, celery leaves registered the highest value (expressed in g Trolox equivalent /L extract.), over nine times higher...
than those recorded by peel, raw, baked and boiled – celery (figure 1).

Total polyphenols content (μmol gallic acid equivalent/mL extract) for raw and processed celery registered close values.

However celery-leaves registered the highest polyphenols content, for both types of celery (figure 2).

![Graph: Total Antioxidant Capacity](chart)

Legend:
- γ1TAC - total antioxidant capacity for type 1 of celery
- γ2TAC - total antioxidant capacity for type 2 of celery
- RC - raw celery
- BC - boiled celery
- CP - celery – peel
- CL - celery leaves
- KC - baked celery
Conclusions

Consumption of celery brings many health benefits. Total polyphenols content (µmoli gallic acid equivalent /mL extract) for raw and processed celery registered close values but celery-leaves registered the highest polyphenols content.

Our results show that celery–leaves who registered a total antioxidant capacity over nine times higher than those recorded by peel, raw, baked and boiled – celery represent a considerable source of antioxidants in human nutrition.

References

3. Dragan Simona, Gergen Iosif, Socaciu Carmen- Alimentața Funcțională cu componente bioactive naturale în sindromul metabolic, Editura Eurostampa, 2008;
5. Gogoașă I., Alda Liana Maria, Velciov Ariana, Bordean Despina Maria, Rada Maria, Moigradean Diana, Alda S. and Gergen I., 2014 - Preliminary research regarding the use of some vegetables (carrot, parsley, celery and tomato) as supplementary sources of bio minerals, Journal of Horticulture, Forestry and Biotechnology 18, no. 4, 102-107;
7. Yao Yang, Wei Sang, Mengjie Zhou and Guixing Ren, 2010 - Phenolic composition and antioxidant activities of 11 celery cultivars, *Journal of Food science* 75, no. 1, C9-C13;