
Volume 17(4), 22- 27, 2013 
JOURNAL of Horticulture, Forestry and Biotechnology 
www.journal-hfb.usab-tm.ro 

22 

24-Epibrassinolide and 28-homobrassinolide, two 
brassinosteroids, inhibit protocorm-like body development in 
hybrid Cymbidium (Orchidaceae) 
 

Jaime A. Teixeira da Silva1,2 

 

1 
Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Miki-cho, Kagawa, 761-0795, 

Japan; 
2 
Current address: Miki cho post office, Ikenobe 3011-2, P. O. Box 7, Kagawa-Ken, 761-0799, Japan 

 
*Corresponding author. Email: jaimetex@yahoo.com 

 
 
Abstract       Brassinolides, a sub-class of brassinosteroids, have 
demonstrated plant growth regulator (PGR)-like activity in other crops. Two 
brassinolides, 24-epibrassinolide (24-epiBL) and 28-homobrassinolide (28-
homoBL), have shown some ability to induce somatic embryogenesis in a 
limited number of orchids, while they have primarily shown to mitigate the 
negative effects of biotic and abiotic stresses in several plants. In this study, 
the induction of new protocorm-like bodies (or neo-PLBs) in hybrid 
Cymbidium, an important ornamental, under the influence of 1, 2, 4, 8 or 16 
µM of 24-epiBL and 28-homoBL (separately) was attempted using regular 
explants (half-PLBs) or PLB transverse thin cell layers (tTCLs) cultured on 
PGR-free Teixeira Cymbidium (TC) medium. tTCLs produced significantly 
fewer neo-PLBs than half-PLBs, which in turn produced significantly fewer 
PLBs on PGR-free medium supplemented with any concentration of 24-epiBL 
or 28-homoBL than on control TC medium with PGRs. Results of this study 
show that while brassinolides are unable to satisfactorily substitute for PGR-
like activity, they can mitigate heavy metal- and salt-induced stress 
(unpublished data).   
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Brassinosteroids (BRs) are a group of polyhydroxy 

steroidal lactones of plant origin that regulate growth 

and development (Clouse and Sasse 1998), ubiquitous 

in plants, eliciting a wide spectrum of physiological 

responses and pleiotropic effects, including somatic 

embryogenesis, seed germination, rhizogenesis, 

growth, flowering and senescence (Choe 2006) as well 

as a wide range of physiological responses in plants, 

including stem elongation, pollen tube growth, leaf 

bending and epinasty, root growth inhibition, induced 

synthesis of ethylene, activation of proton pump, 

xylem differentiation, synthesis of nucleic acids and 

proteins, activation of enzymes and photosynthesis (Yu 

et al. 2004; Hayat et al. 2007; Clouse 2008). BRs 

promoted adventitious shoot regeneration from 

segments of cauliflower hypocotyls (Sasaki 2002) and 

improve embryogenic tissue initiation in conifers and 

rice (Pullman et al. 2003). BRs are widespread in 

plants including dicots, monocots, gymnosperms, ferns 

and algae, and exist in all parts of the plant (Khripach 

et al. 2000; Rao et al. 2002). They are mainly produced 

in pollen but are also present in seeds, stems, young 

leaves and buds, but in lower amounts than pollen 

(Fujioka et al. 1998). BRs regulate cell elongation and 

divisional activities by activating cell wall-loosening 

enzymes, increasing thus the synthesis of cell wall and 

membrane materials (Khripach et al. 2000). The cell 

wall-loosening enzymes activate H
+
-ATPases, which 

acidify the apoplast, and thereby possibly enhancing 

seedling growth (Haubrick and Assman 2006). 

BRs also confer resistance to plants against 

various biotic and abiotic stresses (Nunez et al. 2003; 

Sasse 2006; Ali et al. 2008; Kartal et al. 2009; 

Vardhini et al. 2010), including thermal stress 

(Kurepin et al. 2008), salinity (Ali et al. 2007), chilling 

injury (Liu et al. 2009) and heavy metal stress (Arora 

et al. 2008; Hayat et al. 2010), by modulating the 

activities of antioxidative enzymes involved in the 

Asada-Halliwell pathway (Bajguz and Hayat 2009; 

Arora et al. 2010). High concentrations of metals are 

toxic and severely interfere with physiological and 

biochemical functions of plants (Triantaphylidès and 
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Havaux 2009), and induce oxidative stress through 

formation of reactive oxygen species (ROS). BRs, 

which also regulate cell division and cell elongation, 

vascular differentiation, reproductive development and 

modulation of gene expression (Bajguz 2007; Park et 

al. 2010), are present in very low concentrations 

throughout the plant kingdom and are extensively 

disseminated in reproductive and vegetative tissues 

(Bajguz and Tryten 2003; Symons et al. 2007). 

Brassinolide (BL) is an important naturally occurring 

BR with strong biological activity that induces a large 

range of cellular responses, including plant growth, 

seed germination and nitrogen fixation (Fujioka 1999). 

24-epiBrassinolide (24-epiBL) improves the resistance 

of plants towards cold, pathogens and salt stress 

(Kulaeva et al. 1991). 

Inspired by studies on the use of 24-epiBL on 

Pinus caribaea, which could stimulate somatic 

embryogenesis in the presence of 2,4-dichlorophenoxy 

acetic acid (Malabadi et al. 2011), or of Liparis 

elliptica (Malabadi et al. 2009) or Cymbidium bicolor 

(Malabadi et al. 2008), this study was established since 

in orchids, protocorm-like bodies are considered to be 

somatic embryos (Teixeira da Silva and Tanaka 2006). 

24-epiBL and 28-homobrassinolide (28-homoBL) 

could also modulate the toxic effects of chromium-, 

cadmium- and mercury-infected soil when radish 

(Raphanus sativus) seeds were sown, with an increase 

in the activity of several antioxidant enzymes 

(Anuradha and Rao 2007; Choudhary et al. 2009; 

Randhawa et al. 2010; Sharma et al. 2012). 28-

homoBL enhanced protein content in Brassica juncea 

seedlings under Zn metal stress (Sharma et al. 2007) 

and enhanced protein content in Oryza sativa 

(Maheshwari and Dubey 2008) and Vigna radiata 

(Jaleel et al. 2007) under heavy metals stress. 24-epiBL 

and 28-homoBL enhanced the protein content in O. 

sativa (Anuradha and Rao 2003) and in wheat 

(Kulaeva et al. 1991), and improved the growth of Al-

stressed mung bean seedlings by increasing the rate of 

photosynthesis and carbonic anhydrase activity (Ali et 

al. 2007). 24-epiBL reduced the effect of water 

stressed tomato plants (Yuan et al. 2010). Thus, in this 

study, 24-epiBL and 28-homoBL were employed (the 

latter differs from the former by the substitution at C-

24 and its configuration at C-24; Fig. 1). 

The use of BRs, in particular 24-epiBL and 28-

homoBL, is rare in orchid tissue culture research 

(Hossain et al. 2013; Teixeira da Silva 2013a), and 

almost non-existent in Cymbidium research, except for 

Cymbidium bicolor (Malabadi et al. 2008). The 

protocorm-like body (PLB) is a somatic embryo in 

orchids (Teixeira da Silva and Tanaka 2006) whose 

neo-formation into new or neo-PLBs can be controlled 

through the use of thin cell layers, or TCLs (Teixeira 

da Silva 2013b), which are also used in this study in 

addition to standard explants, namely half-PLBs (i.e., 

transversally dissected PLBs after removing the shoot 

tip). 

Materials and Methods 

 
All chemicals and reagents, of the highest 

analytical grade available, were purchased from either 

Sigma-Aldrich (St. Louis, USA), Wako Chemical Co. 

(Osaka, Japan) or Nacalai Tesque (Kyoto, Japan). 

PLBs of hybrid Cymbidium Twilight Moon ‘Day 

Light’ (Bio-U, Japan) were cultured and propagated on 

TC medium as outlined in Teixeira da Silva (2012). TC 

medium contains 0.1 mg/l NAA, 0.1 mg/l Kn, 2 g/l 

tryptone and 20 g/l sucrose. TC medium was solidified 

with 8 g/l Bacto agar (Difco Labs., USA) and pH was 

adjusted to 5.3 with 1 N NaOH or HCL prior to 

autoclaving at 100 KPa for 17 min (Teixeira da Silva et 

al. 2005; Teixeira da Silva and Tanaka 2006). Light 

cultures were kept on 40 ml medium in 100-ml 

Erlenmeyer flasks, double-capped with aluminium foil, 

at 25°C, under a 16-h photoperiod with a light intensity 

of 45 µmol/m
2
/s provided by plant growth fluorescent 

lamps (Homo Lux, Matsushita Electric Industrial Co., 

Japan). Two types of explants (10/flask) were used for 

neo-PLB induction and proliferation in all experiments: 

a) longitudinally bisected PLB (3-4 mm in diameter) 

segments (hereafter termed half-PLBs), and b) 

transverse thin cell layers (tTCLs) prepared according 

to Teixeira da Silva (2013b). As indicated in other 

papers, recommendations related to culture conditions, 

media, and PLB induction, formation and proliferation 

were followed from the Cymbidium literature, 

specifically pertaining to medium formulation 

(Teixeira da Silva et al. 2005), abiotic factors (Teixeira 

da Silva et al. 2006a) and biotic factors (Teixeira da 

Silva et al. 2006b).  

To TC medium free of PGRs, the following 

concentrations of 24-epiBL and 28-homoBL (Fig. 1) 

were added: 1, 2, 4, 8, 16 µM. Sincere preliminary 

trials indicated that 0.01-0.5 µM of both BLs had no 

effect on neo-PLB formation, and that concentrations 

in excess of 50 µM had a negative effect on neo-PLB 

formation (data not shown), the five tested 

concentrations within the range of 1-16 µM was 

selected. The number of neo-PLBs per half-PLB or per 

PLB tTCL were measured after 45 days in culture. 

Usually, 30 days would only allow for the observation 

of premature neo-PLBs, 60 days would already result 

in the formation of shoot tips from neo-PLBs while by 

120 days shoots and roots will have fully developed, 

hence the choice of 45 days (Teixeira da Silva and 

Dobránszki 2013). 

Experiments were organized according to a 

randomized complete block design (RCBD) with three 

blocks of 10 replicates per treatment. All experiments 

were repeated in triplicate (n = 30, total sample size per 

treatment). Data was subjected to analysis of variance 

(ANOVA) with mean separation by Duncan’s multiple 

range test (DMRT) using SAS
®
 vers. 6.12 (SAS 

Institute, Cary, NC, USA). Significant differences 

between means were assumed at P ≤ 0.05. 
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Fig. 1 Chemical structure of 24-epibrassinolide (24-epiBL; left; www.chemexper.com) and 28-homobrassinolide (28-

homoBL; bottom; www.chemicalbook.com) used in this study. 

 

Results and Discussion 
 

tTCLs produced significantly fewer neo-PLBs than 

half-PLBs and half-PLBs produced significantly fewer 

PLBs on PGR-free medium supplemented with any 

concentration of 24-epiBL or 28-homoBL than on 

control TC medium with PGRs (Table 1; Fig. 2). In 

this study, while BRs were unable to satisfactorily 

substitute for PGR-like activity (Table 1), they could 

still induce neo-PLB formation in the absence of PGRs, 

and can mitigate heavy metal- and salt-induced stress 

(unpublished data). 

 

 
Table 1 

Effect of plant growth regulators on neo-PLB formation from half-PLB or PLB tTCL culture of hybrid 

Cymbidium Twilight Moon ‘Day Light’ 
Medium 
composition 

Concentration 
(µM) 

Explants forming 
neo-PLBs (%) 

Number of neo-
PLBs per explant 

Fresh weight (mg) of 
PLB explant + neo-
PLBs 

Half-PLBs on: 
TC (control) 

 100 a 8.3 a 526 a 

PLB tTCLs on: 
TC (control) 

100 a 2.1 e 188 e 

Half-PLBs on: 
TC minus PGRs 

100 a 1.2 f 321 d 

PLB tTCLs on: 
TC minus PGRs 

100 a 0.3 g 81 fg 

Half-PLBs on: 
TC + 24-epiBL 

1 100 a 6.7 b 483 b 
2 91 b 6.3 b 437 bc 
4 88 b 5.8 bc 401 c 
8 71 bc 5.1 c 356 cd 
16 33 d 2.3 e 193 e 

Half-PLBs on: 
TC + 28-homoBL 

1 94 ab 6.2 b 468 b 
2 86 b 5.8 bc 416 c 
4 83 b 4.1 d 325 d 
8 36 d 1.3 f 127 ef 
16 14 e 0.4 g 77 g 

PLB tTCLs on: 
TC + 24-epiBL 

1 96 ab 1.9 ef 173 e 
2 84 b 1.4 f 153 ef 
4 64 c 0.9 fg 106 f 
8 19 e 0.3 g 74 g 
16 3 f 0.1 g 60 g 

PLB tTCLs on: 
TC + 28-homoBL 

1 89 b 1.4 f 154 ef 
2 74 bc 1.1 fg 121 ef 
4 42 cd 0.5 fg 88 fg 
8 11 ef 0.1 g 62 g 
16 0 f 0 g 54 g* 

Mean values followed by the same letter in the same column (i.e., across explants and chemical compounds) are 
not significantly different based on DMRT (P = 0.05). See text for media constituents. n = 90 (9 (3 × 3 blocks) 
Petri dishes × 10 for each treatment). 
24-epiBL, 24-epibrassinolide; 28-homoBL, 28-homobrassinolide; PGR, plant growth regulator (in this table refers 
to NAA and kinetin); PLB, protocorm-like body; TC, Teixeira Cymbidium medium (Teixeira da Silva 2012), 
includes 0.1 mg/l α-naphthaleneacetic acid (NAA) and 0.1 mg/l kinetin, 2 g/l tryptone and 20 g/l sucrose (see 
reference for modified micro- and macro-nutrients); tTCL, transverse thin cell layer. 
* Vestigial mass of original explant, thus the value would never be 0, even though no neo-PLB formation. 

http://www.chemexper.com/
http://www.chemicalbook.com/
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24-epiBL has been shown to have various effects 

on plant growth and amelioration of plant stress. 24-

epiBL improved Brassica juncea growth following the 

activation of antioxidant enzymes (Arora et al. 2011), 

possibly due to an increase in transcription and/or 

translation processes of specific genes related to stress 

tolerance (Fariduddin et al. 2004; Kagale et al. 2007). 

BRs increased DNA, RNA and protein contents of 

Chlorella vulgaris (Bajguz 2000) and in Brassica 

napus and tomato, 24-epiBL improved thermotolerance 

and accumulated heat-shock proteins (Dhaubhadel et al. 

1999, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Growth of neo-PLBs on control TC medium 45 days after culture in the presence of PGRs (A) or in the presence 

of 4 µM 24-epiBL showing the excessive formation of hairy trichomes on the surface of neo-PLBs (B).  

Scale bars = 1 mm (A); 2 mm (B). 

 

Mazorra et al. (2002) found that CAT activity in 

rice was enhanced under the influence of BRs. ROS 

generated by heavy metals could be alleviated by BR 

treatments (Almeida et al. 2005; Hayat et al. 2007). 

Liu et al. (2009) demonstrated that epi-BR treatment 

significantly enhanced antioxidant enzyme activity and 

antioxidant content in Chorispora bungeana under 

chilling stress. One possible mechanism involved in 

reducing toxicity is the chelation of metal ions by 

ligands, including amino acids, organic acids, peptides 

or polypeptides (e.g., Arora et al. 2008). 28-HomoBL 

ameliorated Ni toxicity by increasing the activities of 

several antioxidant enzymes: superoxide dismutase, 

guaiacol peroxidase, ascorbate peroxidase, catalase and 

glutathione reductase (Bhardwaj et al. 2008). 
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