THE CORRELATIONS BETWEEN TOTAL ANTIOXIDANT CAPACITY AND TOTAL POLYPHENOLS CONTENT ESTABLISHED FOR TOMATOES

DIANA MOIGRĂDEAN¹, MARIANA-ATENA POIANĂ¹, I. GOGOAŞĂ¹, MONICA HĂRMĂNESCU¹, I. GERGEN¹, A. LĂZUREANU²

¹Banat’s University of Agricultural Sciences and Veterinary Medicine, Faculty of Food Processing Technology, Calea Aradului 119, Timisoara, RO 300645, 2Banat’s University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, Calea Aradului 119, Timisoara, RO 300645

Summary

Tomatoes (Lycopersicum esculentum) are the most popular garden vegetable crop in world [6]. Tomatoes have been reported to be an important source of antioxidants such as lycopene, phenolics, and vitamin C in human diet [1], and have been linked with reduced risk of prostate and various other forms of cancer, as well as heart diseases [2].

The aim of the study was to determine the total antioxidant capacity and total polyphenol content and to establish some correlations between this parameters in two summer-autumn tomatoes varieties (Campbell 1327 and Ace Royal), cultivated in field condition, in west area country. The analyses were performed on control soil samples (without extra fertilization substances) and soil sampled after differentiated NPK fertilization in variable dozes: N₃₀P₃₀K₃₀, N₄₅P₄₅K₄₅, N₆₀P₆₀K₆₀, N₁₂₀P₆₀K₆₀.

The total antioxidant capacity was studied using FRAP method and the total polyphenol content by Folin-Ciocalteu method.

Materials and methods

Reagents and equipment: Were used chemicals and reagents from Merck; deionized water. Absorption determination for FRAP and total polyphenol content was using Spectrophotometer UV-VIS SPECORD 205 by Analytik Jena.

Samples preparation: All tomatoes samples were collected on august. For each sample it was made the alcoholic extraction: 10 g of each sample were mixed with 10 mL ethanol solution (50%), and after 30 minutes were filtered. Ethanol extracts were diluted than 1/10 with ethanol solution (50%).

Determination of total antioxidant capacity (TAC) by FRAP method: FRAP method depend upon the reduction of ferric tripyridyltriazine complex to the ferrous tripyridyltriazine by a reductant at low pH. This ferrous tripyridyltriazine complex has an intensive blue color and can be monitored at 593 nm [3]. Reagents: acetate buffer, 300mM/L, pH 3.6 (3.1g sodium acetate 3H₂O and 16 mL conc.; acetic acid per 1L of buffer solution); 10 mM/L TPTZ (2, 4, 6-tripyridyl-s-triazine) in 40 mM/L HCl; 20 mM/L FeCl₃6H₂O in distilled water. FRAP working
solution: 25 mL acetate buffer, 2.5 mL TPTZ solution and 2.5 mL FeCl₃ solution. The working solution must be always freshly prepared. Aqueous solution of known Fe (II) concentration was used for calibration, in a range of 0.1-0.8 mM/L. For the preparation of calibration curve 0.5 mL aliquot of 0.1, 0.2, 0.4, 0.6, 0.8 µM/mL aqueous Fe(II) as Mohr salts solution (1mM) were mixed with 2.5 mL FRAP working solution; FRAP reagent was used as blank. The absorption was read after 10 min. at 25 °C and 593 nm. All determinations were repeated for three times. Total antioxidant capacity in tomatoes in Fe (II) equivalents was calculated. Correlation coefficient (r^2) for calibration curve was 0.9677 [5].

Determination of phenolic compounds: It was used the following reagents: 2.0 M Folin-Ciocalteu phenol reagent, gallic acid and anhydrous carbonate. The content of total polyphenolic compounds in tomatoes ethanol extracts diluted 1/10 was determined by Folin-Ciocalteu method (1927) [4]. For the preparation of calibration curve 0.5 mL aliquot of 0.2, 0.4, 0.8 and 1.2 µM/mL aqueous gallic acid solution were mixed with 2.5 mL Folin-Ciocalteu reagent (diluted ten-fold) and 2.0 mL sodium carbonate (7.5%). The absorption was read after 2 h at 20°C, at 750 nm. All determinations were repeated for three times. Total content of polyphenols in tomatoes in gallic acid equivalents (GAE) was calculated. Correlation coefficient (r^2) for calibration curve was 0.9986 [5].

Statistical analysis: The results were analyzed using students t-Test for two populations by Origin 6 program and MVSP program – Principal Coordinates Analyze PCA.

Results and discussions

The total antioxidant capacity by FRAP method and polyphenol contents are presented in table 1.

Table 1

<table>
<thead>
<tr>
<th>Tomatoes varieties</th>
<th>Fertilization dozes</th>
<th>Antioxidant capacity [µMFe/100g fresh matter]</th>
<th>Polyphenols [µMgallic acid/100g fresh matter]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell 1327</td>
<td>Control</td>
<td>310</td>
<td>100.4</td>
</tr>
<tr>
<td></td>
<td>N₃₀P₃₀K₃₀</td>
<td>290</td>
<td>75.6</td>
</tr>
<tr>
<td></td>
<td>N₄₅P₄₅K₄₅</td>
<td>368</td>
<td>102.0</td>
</tr>
<tr>
<td></td>
<td>N₆₀P₆₀K₆₀</td>
<td>476</td>
<td>136.0</td>
</tr>
<tr>
<td></td>
<td>N₁₂₀P₁₂₀K₁₂₀</td>
<td>326</td>
<td>95.8</td>
</tr>
<tr>
<td>Ace Royal</td>
<td>Control</td>
<td>376</td>
<td>109.8</td>
</tr>
<tr>
<td></td>
<td>N₃₀P₃₀K₃₀</td>
<td>376</td>
<td>107.6</td>
</tr>
<tr>
<td></td>
<td>N₄₅P₄₅K₄₅</td>
<td>322</td>
<td>117.8</td>
</tr>
<tr>
<td></td>
<td>N₆₀P₆₀K₆₀</td>
<td>350</td>
<td>113.6</td>
</tr>
</tbody>
</table>
Fig. 1. t -Test for two populations for antioxidant results

SOI 1 = Campbell 1327; SOI 2 = Ace Royal

The t -Test for two populations of tomatoes Campbell 1327 and Ace Royal is showing that the differences between the means for the two types of tomatoes varieties are not significant for both determinations (figure 1 and figure 2). The statistical analysis was performed with Origin 6 program.
Fig. 3. PCA analysis for total antioxidant capacity and polyphenol content in tomatoes varieties

Conclusions

PCA is showing that $N_{60}P_{60}K_{60}$ fertilization doses is giving us the highest values for both studied parameters in Campbell 1327 tomatoes assortment were the transformed data corresponding to TAC and GAE are 21.817 µMFe/100g fresh matter for antioxidant capacity (TAC) and 11.662 µMgallic acid/100g fresh matter for polyphenols content (GAE). In Ace Royal tomatoes assortment the transformed data corresponding to TAC and GAE are 19.391 µMFe/100g fresh matter for antioxidant capacity (TAC) and 10.479 µMgallic acid/100g fresh matters for polyphenols content (GAE), values which correspond to the control samples.

Using a differentiated NPK content of fertilization on the influence of antioxidant capacity and polyphenols is different from a variety of tomatoes to another.

References

1. Abushita, A.A., Determination of antioxidants vitamins in tomatoes, Food Chemistry 60, p.207-212
2. Barber and Barber, Lycopene and prostate cancer, Prostate Cancer and Prostatic Diseases, 2002, 5, p. 6-12
5. Gergen I., Analiza produselor Agroalimentare, Editura Eurostampa, Timisoara, 2004